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Boolean networks and bloc-sequential updates
f:{0,1}" — {0,1}"

fi: {0,1}" — {?)»1} for i [n]

A(x) = —x
h(x) =x1V-x3

f3(X) = X1
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Boolean networks and bloc-sequential updates
f:{0,1}" — {0,1}"

£: 10,1} = {0,1} for i € []

Block-sequential = ordered partition of [n]
A(x) = —x eg. ({1,2,3}) or ({2},{1,3}) or ({3},{1},{2})...
h(x) =x1V-x3

f(x) = x1

({1,2,3}) ({2}, {1,3})
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Outline

BS, = { ordered partitions of [n] } (deterministic)

> Limit dynamics and block-sequential updates
> Counting bloc-sequential updates

> Extra: on computing the interaction digraph

Encoding of f : {0,1}" — {0,1}" as n circuits : {0,1}" — {0, 1}
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Limit dynamics and bloc-sequential updates
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Limit dynamics and bloc-sequential updates

Fixed points are invariant under any BS,, limit-cycles are not.
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Limit dynamics and bloc-sequential updates

Fixed points are invariant under any BS,, limit-cycles are not.

LCk(f) the set of limit-cycle of length k € N of f.

|Given f : {0,1}" — {0,1}" ...

Theorem. ...LCk(f) # 0 ? is NP-complete.
Ix: FR(x) = x AVK < kK (x) #x

identity

disjunctions

} conjunctions

AND/OR with in-degree < 3
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Limit dynamics and bloc-sequential updates

Fixed points are invariant under any BS,, limit-cycles are not.

LCk(f) the set of limit-cycle of length k € N of f.

|Given f : {0,1}" — {0,1}" ...

Theorem. ...LCk(f) # 0 ? is NP-complete.
Ix: FR(x) = x AVK < kK (x) #x

Theorem. ... 3B € BS, : LCk(fig)) # 0 ? is NP-complete.

3B €8S, 1 3Ix 1 fg(x) = x A VK < ki fig(x) # x

Same construction
AND/OR with in-degree < 3
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Limit dynamics and bloc-sequential updates

Fixed points are invariant under any BS,, limit-cycles are not.

LCk(f) the set of limit-cycle of length k € N of f.

|Given f : {0,1}" — {0,1}" ...

Theorem. ...LCk(f) # 0 ? is NP-complete.
Ix: FR(x) = x AVK < kK (x) #x

Theorem. ... 3B € BS, : LCk(fig)) # 0 ? is NP-complete.

EIBEBS,,.EIX ik (X) = x A VK < k: g (x) # x

Theorem. ... 3B € BS, : LCk(fig]) =0 ? is NPNP_complete.
IB € BS,, : VX f[B]( )#x\/ﬂk’<k f[B]( x) = x
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Limit dynamics and bloc-sequential updates

Theorem. ... 3B € BS, : LCk(fig)) =0 7 is NPNP_complete.

3B €8Sy 1 Vx 1 fig(x) # x V 3K < ki f(x) = x

Reduction from 3V-3-SAT: given ¢ on n variables and s € [n],
dx € {0,1}*: Vy € {0, 1} 1 xy |= ¢?
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Limit dynamics and bloc-sequential updates
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Counting bloc-sequential updates
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Counting bloc-sequential updates

[BS,| = nzln {r7'}= i io(_l)ij C>jn1

i=0 parg

OEIS/A000670

6/12



Counting bloc-sequential updates

[BS,| = nzln {r7'}= i i (_1)f1<j)jn1

i=0 i=0 j=0

OEIS/A000670

However,

(L2} .34 .(5.6))
(2)—(1) {21.{1} (3.4} .{5.6))
© (6)
(4)—(5)
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Counting bloc-sequential updates

[BS,| = nzln {r7'}= i io(_l)ij C)jnl

i=0 parg

OEIS/A000670

However,

{1’2} ,{3,4} ,{5’6}
{2}, {1} ,{3,4} ,{5.,6}
{,2p  {4},{3} .{5,6}
{25,{1} ,{4},{3} .{5,6}

—~ A~~~
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Counting bloc-sequential updates

[BS,| = nzln {r7'}= i io(_l)ij C)jnl

i=0 i=0 j=

OEIS/A000670

However,

{12} .{3,4 ,{56})
{2}, {1} {34} ,{5,6})
{1,2}  {4},{3} ,{5,6})
{23,{1} {4}, {3} ,{5,6})
{1.2}  ,{3,4}  ,{6},{5})
{23, {1} .{3,4} ,{6},{5})
{12} {4},{3} ,{6},{5})
{2341} {4}, {3} ,{6},{5})

e N e R R R R
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Update digraphs and equivalence relation

Aracena et al. : it only matters whether
i is updated prior to j when j depends on /.
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Update digraphs and equivalence relation

Aracena et al. : it only matters whether
i is updated prior to j when j depends on /.

Given f and B = (B, ..., B,) € BS,, the update digraph is a
{®, ©}-edge-labeling of the interaction digraph

i%j <= t;>twithieB,andje B,

iSj <= tj<tjwithicB,andje€ By
Theorem [Aracena et al. 2009]. If the update digraphs are
identical then the dynamics are identical.

(&)
on0 (12,3}, {4})

&l © |

1,3},{2.4
D ) ({1,3},{2,4})

It defines an equivalence relation B=;B’ relative to G.
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Forbidden cycles
Caution: not all edge-labelings are valid.

S}
© @

Theorem [Aracena et al. 2011]. An edge-labeling is valid iff
the multi-digraph obtained by reversing the orientation of ©-arcs
does not contain a cycle with at least one ©-arc (forbidden).

8/12



Forbidden cycles

Caution: not all edge-labelings are valid.
S
© @
Theorem [Aracena et al. 2011]. An edge-labeling is valid iff

the multi-digraph obtained by reversing the orientation of ©-arcs
does not contain a cycle with at least one ©-arc (forbidden).

#UD
Input : A digraph G on n vertices.
Ouput : Count valid {®, ©}-edge-labelings, ie. | BS,/ =¢ |.
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#P-completeness

#P= class of problems counting the number of accepting branches,
of a non-deterministic Turing machine halting in polytime.

= counting the number of certificates of a problem in NP.
(solutions)

{x:3y :R(x,y)} e NP <= x— [{y: R(x,y)}| € #P

#P-completeness is relative to parcimonious polytime reductions,
preserving the number of certificates.

eg. #3-SAT, #Clique, #VertexCover, #FAS are #P-complete,
2-SATE P but #2-SAT is #P-complete.
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The result

Theorem. #UD is #P-complete.
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Goal: acyclic orientation of H < valid edge-labeling of G.
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The result

Theorem. #UD is #P-complete.

Proof. Parcimonious polytime reduction from counting the
number of acyclic orientations of H (undirected).

Goal: acyclic orientation of H < valid edge-labeling of G.

H +— G is an arbitrary

orientation
cycle

—
—

acyclic orientation of H

edge-labeling
forbidden cycle
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More and perspectives
Theorem. #UD is #P-complete.

Theorem. #UD is in FP for digraphs of treewidth at most 2.
(D cati, D series-parallel, having combinatorial decompositions)
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More and perspectives
Theorem. #UD is #P-complete.

Theorem. #UD is in FP for digraphs of treewidth at most 2.
(D cati, D series-parallel, having combinatorial decompositions)

Open. Is #UD in FP for bounded treewidth? for Halin graphs?

Open. Count on cycles of size n with neighborhood of radius r?
For r = 1 we have ECAs on periodic configs: 37 — 2"+ 4 2.

5//\1
7\\//11

8 10
9

Corollary. Count T¢(2,0) when G is a acyclic.

Theorem [Aracena et al. 2013]. Count n! <= G is a tournament.
11/12



Extra: on computing the interaction digraph
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Extra: on computing the interaction digraph

Interaction digraph
Input : a Boolean automata network f and a digraph G.
Ouput : is G the interaction digraph of f?

Intuition: deciding the existence of an arc is NP-complete
Sx € {0,117 () # fix+ )

and deciding the nonexistence of an arc is coNP-complete
Vx € {0,1}": fi(x) = fi(x + &)
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