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JAutomatalnetworks!

In this talk:

@ Finite digraphs of finite
automata

@ Each node (automaton) has its
own alphabet, transitions

@ A node reads the state of its =A{e 00}
inbound neighbors to update 1,2,4: erse; 00 0> e
3: eerre eeire; et e
..I—>.; ..I—).; oo +H— o
eo o 00— 0; 00> 0

@ Nodes update in parallel
(all at the same time)
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INN——.

The transition graph of a network is the graph of the
“function computed by” this network.

The network is a succint way to describe its transition graph.

4/27

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks



Aihe]Riceltheorem)

Any nontrivial property of the function computed by a
Turing Machine is undecidable.
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BN
ihe]Riceltheorem

Theorem (Rice, 1953)

Any nontrivial property of the function computed by a
Turing Machine is undecidable.

Our goal: test properties of Gf, given an automata network F.

Metatheorem

Any nontrivial property of the transition graph of an
Automata Network is hard.

So much fine print...
@ Property?
@ Nontrivial?
@ Hard?

5/27

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks



BN
ihe]Riceltheorem

Theorem (Rice, 1953)

Any nontrivial property of the function computed by a
Turing Machine is undecidable.

Our goal: test properties of Gf, given an automata network F.

Metatheorem

Any nontrivial property of the transition graph of an
Automata Network is hard.

So much fine print.. Finite transition graph —

@ Property? everything is decidable

R
® Nontrivial? “Hard"” is something like NP-hard.
@ Hard?
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EEEEEEE————————
Eaeeding astweds

When giving an automata network to an algorithm,
how shall we encode it?

o Alphabets are {0,...,n—1}

o Neighbors of a node are ordered

@ A communication graph (adjacency matrix)
@ One Boolean circuit per node
e States encoded in binary

Nodes are allowed to ignore a neighbor # interaction graph. 6/27
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EirstzOrder,
Definition (First-order property)

o Vx: ¢ “for all configuration x': variables denote configurations
o T(x,y) “x transitions to y in one step”
o x=y

° 1A g2
O—\¢

Fixed point. 3x: T(x, x)
3-cycle. Ixy,x0,x3 : T(x1,x2) A T(x2,x3) A T(x3,x1)
Injectivity. Vxi, X2,y : [T(x1,¥) A T(xe,y)] = [x1 = xa]

Determinism. Vx, y1, v : [T(x,y1) A T(x, y2)] = [y1 = y2]
7/27
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INEE——————.
Rirstiorder, arelhard]

Definition (¢-Dynamics)

¢-DYNAMICS

Input: a deterministic automata network F
Question: does Gr = ¢7?

Note: ¢ is not part of the input!

Theorem (FGPT, 2020)

For a fixed ¢, the problem ¢-DYNAMICS is either
O(1), or NP-hard, or coNP-hard.
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BN
A reahaiien o SAT

Fix ¢ once and for all.

Theorem (F'GPT, 2020)

The problem ¢-DYNAMICS is either O(1), or NP-hard, or coNP-hard.

Let U denote the disjoint union.
»-DyYNAMICS is NP-hard if there are G, J, D with |J| = |D| and:

GUJUJU---UJ U---UJ o,
GUJUJU---UDU---UJ ¢

“You can have Jillions of J’s, but one D makes a Difference.”
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A reahaiien o SAT

Lemma
¢-DYNAMICS is NP-hard if there are G, J, D with |J| = |D| and:
JUJU-—-UJ U U 6,
JUJU---UDU---UJE ¢.

Let S denote an instance of SAT with s variables.
Make a network with s+ 1 automata fy, ..., fs.
Alphabets: fy over {1,...,|J|} and fi,...,f; over {0, 1}.
Update: fy evaluates S(f; ... fs);

(%)

o if it finds O, it realizes J,
o if it finds 1, it realizes D. @
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BN
A reahaiien o SAT

Let S denote an instance of SAT with s variables.

Make a network with s+ 1 automata fy,...,f.
Alphabets: fy over {1,...,|J|} and f1,...,f; over {0,1}.
Update: fy evaluates S(fi ... f);

@ if it finds 0, it realizes J, @
@ if it finds 1, it realizes D. e 6 e e

The dynamics has a copy of D per positive assignment for S,
and a copy of J per negative assignment for S.

This network is producible in polynomial time.
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Findig 64D

Our next mission is to find G, J, D
as announced.
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Determinism
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Elementaryfequivalence

Let m denote the rank of ¢ (its number of quantifiers), and Gi, G2 be graphs.

Definition (Elementary equivalence)

Write G, =, Gs iff G, Gy satisfy the same formulae of rank m.

Lemma (Fraissé, 1953)

The relation =g, has finitely many classes: a1,. .., Qm)-
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Elementaryfequivalence

Let m denote the rank of ¢ (its number of quantifiers), and Gi, G2 be graphs.

Definition (Elementary equivalence)

Write G, =, Gs iff G, Gy satisfy the same formulae of rank m.

Lemma (Fraissé, 1953)

The relation =g, has finitely many classes: a1,. .., Qm)-

Definition (Dulc)

aq
® < Oéo.koﬁ.oq
v A v A
= ase ® O
v » v »
° °
N__A O{O ~__ A ao
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Brofiles

lete=2-3"+1landco=m-e.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at m- e.

A/—.ﬂ\
[ ] [ ]

e N ece | 1
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Profiles
lete=2-3"+1landco=m-e.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at m- e.
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lete=2-3"+1landco=m-e.

Definition (Profile)

The profile of a dulc is counting its strings of length m, capped at m- e.
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Theorem (FGPT, 2020)

If Dulc(Gy) and Dulc(Gy) have same profile, then G; =, Go.
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Let 71, m2 denote profiles.

Write mp < o iff for all s, we have 7 (s) < ma(s).

Facts

There are finitely many profiles.

There is a minimal profile (L) and a maximal profile (T).
Each profile is either ¢-positive or ¢-negative.

/>

qﬁ-negatives

\>

<I\
</

gb—positives

Gamard, Guillon, Perrot,

Theyssier

Rice-like theorems for automata networks
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Findig 64D

Assume ¢ has infinitely many positive and negative instances.
(Otherwise, ¢-DyNAaMICS is O(1).)

Assume T is ¢-positive.
(Otherwise, consider —¢ and get coNP-hardness.)

Proof (Existence of J and D)
Infinitely many negative graphs, but finitely many negative profiles.
There's a negative profile 7 such that 7(J) = oo for some J.

Take a maximal such 7. (Any 7' > 7 is positive.)

o Let G be a graph with profile .
o Let Jbe a graph with profile J. (So G and GLIJ have same profile.)
o Let D be any graph such that 7(D) < oo.
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Rirstiordedpropertiesfarelhard

¢-DYNAMICS is either O(1), or NP-hard, or coNP-hard
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Fst-ender preperties are herd

Theorem (FGPT, 2020)

¢-DYNAMICS is either O(1), or NP-hard, or coNP-hard
The same applies to other problems:

¢-BLJECTIVE-DYNAMICS

Input: an deterministic automata network F
Promise: F is bijective

Question: does Gr = ¢7?

¢-LIMIT-DYNAMICS
Input: an deterministic automata network F

Question: does the limit graph of F satisfy ¢?

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks
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Otfoer tiiings ere alse (exd

Theorem (F'GPT, 2020)

Let ¢ be a level of PH.
There is a formula ¢y such that ¢,~-DYNAMICS is ¢-hard.
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BN
Otfoer tiiings ere alse (exd

Theorem (F'GPT, 2020)
Let ¢ be a level of PH.
There is a formula ¢y such that ¢,~-DYNAMICS is ¢-hard.

Theorem (F'GPT, 2020)

The following problem is PSPACE-complete:

AN-DyNAMICS
Input: a network F and a first-order formula ¢
Question: does Gr = ¢7?

(This time, ¢ is part of the input!)
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INEE———————
Second Order;

Definition (Monadic Second-Order property)

o Vx: ¢

o VX : ¢ “for all set of configurations X"

o xeX “x belongs to X"

o T(xy), X=y, o1 A @2, —¢

20/27
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INEE———————
Second Order;

Definition (Monadic Second-Order property)

o Vx: ¢

o VX : ¢ “for all set of configurations X"

o xeX “x belongs to X"

o T(xy), xX=y, ¢1 A P2, ¢

@ Chains. T*(x,y):=JP: x,ye PAVze P:

degif (x) =1, degp (x) = 0,
degg (y) = 0, degp (y) = 1,
degp (2) = 1, degp (2) = 1.

@ Connexity. Vx,y: T(x,y) A T*(y, x).
20/27
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The “dhyramiess” prekem ever MSO

Now fix v an MSO formula.

Definition (}-MSO-Dynamics)
Y-MSO-DYNAMICS
Input: a nondeterministic network F
Question: does Gr = ?

What is the complexity of ¥)-MSO-DyYNAMICS?

Can we find G, J, D for an arbitrary fixed MSO formula ¢?

21/27
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Universalf2fodMS Q)

Proposition (Bonnet, TGPT, 2021)

For all m, there's a graph D, such that for all ) of rank m, either:

e for all G, we have GLI D, = v; or
e for all G, we have GU Dy, [ 1.

We have a “universal D” that only depends on the rank of !

We might need to consider —1, though.

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks



Universallifor;
Proposition (Bonnet, TGPT, 2021)

For all m, there's a graph D, such that for all % of rank m, either:
for all G, we have GU D,, = v; or for all G, we have GU D, [~ .

Lemma 1 (cf. Courcelle’s book)

The relation =, for MSO has finitely many classes o, ..., @z(m)-

Lemma 2

For all G, there’s an integer p such that | [P G=,, | "™ G.

Proof (Proposition)
Let A1, ..., Aym) be representatives of aq, ..., aa(m).
Let p be the max p given by Lemma 2 over Ay,..., Aym).
D =LY LP A
23/27
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ilreeldecompositions

Figure 1: Tree decomposition of width 2 for example graph G. This is the minimum possible
treewidth, since G contains a K3 as a minor.

http://wuw.mamicode.com/info-detail-2237033.html 24/27
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G J B NSO

Let k denote an arbitrary integer.

Proposition (TGPT, 2021)

If b has an infinity of models and countermodels of treewidth < k,
then there are suitable G and J.

Theorem (Courcelle)

For all 9, k, there is a tree automaton testing ©» when run on tree
decompositions with bags of size k.

Proof (Proposition)

Find the tree automaton for ¢ and k and use a pumping lemma.

(We need to replace | | with a more complicated “gluing” operator.)
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My MSO (ermnles ere hexd

Let k denote an arbitrary integer.

Theorem (F'GPT, 2021)
If vb has an infinity of models and countermodels of treewidth < k,
then ¥-DyYNAMICS is either NP- or coNP-hard.

26/27
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My MSO (ermnles ere hexd

Let k denote an arbitrary integer.

Theorem (F'GPT, 2021)
If vb has an infinity of models and countermodels of treewidth < k,
then ¥-DyYNAMICS is either NP- or coNP-hard.

What about ) not satisfying that condition?

o Those with finitely many (counter)models are O(1).
o The other ones are trick (e.g. CLIQUE)...
@ The pumping techniques do not work anymore for them.

26/27
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@ The last case of the MSO theorem

@ The Boolean case (or other fixed alphabet)
@ Other update modes

@ Other logics (Counting..)

@ Your question here

Thank you for your attention!
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