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In this talk:

Finite digraphs of finite
automata

Each node (automaton) has its
own alphabet, transitions

A node reads the state of its
inbound neighbors to update

Nodes update in parallel
(all at the same time)

1 2

34

Σ = {•, •, •}

1, 2, 4: • 7→ •; • 7→ •; • 7→ •
3: •• 7→ •; •• 7→ •; •• 7→ •

•• 7→ •; •• 7→ •; •• 7→ •
•• 7→ •; •• 7→ •; •• 7→ •
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The transition graph of a network is the graph of the
“function computed by” this network.

The network is a succint way to describe its transition graph.
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Theorem (Rice, 1953)

Any nontrivial property of the function computed by a
Turing Machine is undecidable.

Our goal: test properties of GF, given an automata network F.

Metatheorem
Any nontrivial property of the transition graph of an

Automata Network is hard.

So much fine print…
Property?
Nontrivial?
Hard?

Finite transition graph =⇒
everything is decidable
“Hard” is something like NP-hard.

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks



5/27

The Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theorem

Theorem (Rice, 1953)

Any nontrivial property of the function computed by a
Turing Machine is undecidable.

Our goal: test properties of GF, given an automata network F.

Metatheorem
Any nontrivial property of the transition graph of an

Automata Network is hard.

So much fine print…
Property?
Nontrivial?
Hard?

Finite transition graph =⇒
everything is decidable
“Hard” is something like NP-hard.

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks



5/27

The Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theoremThe Rice theorem

Theorem (Rice, 1953)

Any nontrivial property of the function computed by a
Turing Machine is undecidable.

Our goal: test properties of GF, given an automata network F.

Metatheorem
Any nontrivial property of the transition graph of an

Automata Network is hard.

So much fine print…
Property?
Nontrivial?
Hard?

Finite transition graph =⇒
everything is decidable
“Hard” is something like NP-hard.

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks



6/27

Encoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networksEncoding networks

When giving an automata network to an algorithm,
how shall we encode it?

Assumptions
Alphabets are {0, . . . , n − 1}
Neighbors of a node are ordered

Encoding
A communication graph (adjacency matrix)
One Boolean circuit per node

States encoded in binary

Nodes are allowed to ignore a neighbor ̸= interaction graph.
Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks
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Definition (First-order property)

∀x : ϕ “for all configuration x”: variables denote configurations

T(x, y) “x transitions to y in one step”

x = y
ϕ1 ∧ ϕ2
¬ϕ

Examples
Fixed point. ∃x : T(x, x)
3-cycle. ∃x1, x2, x3 : T(x1, x2) ∧ T(x2, x3) ∧ T(x3, x1)
Injectivity. ∀x1, x2, y : [T(x1, y) ∧ T(x2, y)] =⇒ [x1 = x2]
Determinism. ∀x, y1, y2 : [T(x, y1) ∧ T(x, y2)] =⇒ [y1 = y2]
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Definition (ϕ-Dynamics)

ϕ-Dynamics
Input: a deterministic automata network F
Question: does GF |= ϕ?

Note: ϕ is not part of the input!

Theorem (ΓGPT, 2020)

For a fixed ϕ, the problem ϕ-Dynamics is either
O(1), or NP-hard, or coNP-hard.

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks
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Fix ϕ once and for all.

Theorem (ΓGPT, 2020)

The problem ϕ-Dynamics is either O(1), or NP-hard, or coNP-hard.

Let ⊔ denote the disjoint union.

Lemma
ϕ-Dynamics is NP-hard if there are G, J,D with |J| = |D| and:

G t J t J t · · · t J t · · · t J 6|= ϕ,

G t J t J t · · · t D t · · · t J |= ϕ.

“You can have Jillions of J’s, but one D makes a Difference.”

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks
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Lemma
ϕ-Dynamics is NP-hard if there are G, J,D with |J| = |D| and:

J t J t · · · t J t · · · t J 6|= ϕ,

J t J t · · · t D t · · · t J |= ϕ.

Let S denote an instance of SAT with s variables.
Make a network with s + 1 automata f0, . . . , fs.
Alphabets: f0 over {1, . . . , |J|} and f1, . . . , fs over {0, 1}.
Update: f0 evaluates S(f1 . . . fs);

if it finds 0, it realizes J,
if it finds 1, it realizes D.

f0

f1 f2 f3 fs. . .

Gamard, Guillon, Perrot, Theyssier Rice-like theorems for automata networks
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Let S denote an instance of SAT with s variables.
Make a network with s + 1 automata f0, . . . , fs.
Alphabets: f0 over {1, . . . , |J|} and f1, . . . , fs over {0, 1}.
Update: f0 evaluates S(f1 . . . fs);

if it finds 0, it realizes J,
if it finds 1, it realizes D.

f0

f1 f2 f3 fs. . .

Claim 1
The dynamics has a copy of D per positive assignment for S,

and a copy of J per negative assignment for S.

Claim 2
This network is producible in polynomial time.
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Our next mission is to find G, J,D
as announced.
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Let m denote the rank of ϕ (its number of quantifiers), and G1,G2 be graphs.

Definition (Elementary equivalence)
Write G1 ≡m G2 iff G1,G2 satisfy the same formulae of rank m.

Lemma (Fraïssé, 1953)
The relation ≡m has finitely many classes: α1, . . . , αa(m).

Definition (Dulc)

•
•••

•
• •

7→ •
•••

•
• •

α0

α1

α1
α0

α2

α0 α0

•
•••

•
• •
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Let e = 2 · 3m + 1 and ∞ = m · e.

Definition (Profile)
The profile of a dulc is counting its strings of length m, capped at m · e.

•

•

•
•

•

•

•

•

•
•

•

•

••• 1

•••
•••
•••
•••
•••
•••

Theorem (ΓGPT, 2020)

If Dulc(G1) and Dulc(G2) have same profile, then G1 ≡m G2.
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Let π1, π2 denote profiles.

Write π1 ≤ π2 iff for all s, we have π1(s) ≤ π2(s).

Facts
There are finitely many profiles.
There is a minimal profile (⊥) and a maximal profile (>).
Each profile is either ϕ-positive or ϕ-negative.

ϕ-negatives ϕ-positives

•

•

•

•

. . .

•

•

•

••
µ ν⊥ >
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Assume ϕ has infinitely many positive and negative instances.
(Otherwise, ϕ-Dynamics is O(1).)

Assume > is ϕ-positive.
(Otherwise, consider ¬ϕ and get coNP-hardness.)

Proof (Existence of J and D)

Infinitely many negative graphs, but finitely many negative profiles.
There’s a negative profile π such that π(J̃) = ∞ for some J̃.
Take a maximal such π. (Any π′ > π is positive.)

Let G be a graph with profile π.
Let J be a graph with profile J̃. (So G and G⊔ J have same profile.)

Let D be any graph such that π(D) <∞.
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Theorem (ΓGPT, 2020)

ϕ-Dynamics is either O(1), or NP-hard, or coNP-hard

The same applies to other problems:

ϕ-Bijective-Dynamics
Input: an deterministic automata network F
Promise: F is bijective
Question: does GF |= ϕ?

ϕ-Limit-Dynamics
Input: an deterministic automata network F
Question: does the limit graph of F satisfy ϕ?
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Theorem (ΓGPT, 2020)

ϕ-Dynamics is either O(1), or NP-hard, or coNP-hard

The same applies to other problems:

ϕ-Bijective-Dynamics
Input: an deterministic automata network F
Promise: F is bijective
Question: does GF |= ϕ?

ϕ-Limit-Dynamics
Input: an deterministic automata network F
Question: does the limit graph of F satisfy ϕ?
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Theorem (ΓGPT, 2020)

Let ℓ be a level of PH.
There is a formula ϕℓ such that ϕℓ-Dynamics is ℓ-hard.

Theorem (ΓGPT, 2020)

The following problem is PSPACE-complete:
AN-Dynamics
Input: a network F and a first-order formula ϕ
Question: does GF |= ϕ?

(This time, ϕ is part of the input!)
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Theorem (ΓGPT, 2020)

Let ℓ be a level of PH.
There is a formula ϕℓ such that ϕℓ-Dynamics is ℓ-hard.

Theorem (ΓGPT, 2020)

The following problem is PSPACE-complete:
AN-Dynamics
Input: a network F and a first-order formula ϕ
Question: does GF |= ϕ?

(This time, ϕ is part of the input!)
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Definition (Monadic Second-Order property)

∀x : ϕ

∀X : ϕ “for all set of configurations X”

x ∈ X “x belongs to X”

T(x, y), x = y, ϕ1 ∧ ϕ2, ¬ϕ

Examples
Chains. T∗(x, y) := ∃P : x, y ∈ P

∧
∀z ∈ P :

deg+P (x) = 1, deg−P (x) = 0,

deg+P (y) = 0, deg−P (y) = 1,

deg+P (z) = 1, deg+P (z) = 1.

Connexity. ∀x, y : T∗(x, y) ∧ T∗(y, x).
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Definition (Monadic Second-Order property)

∀x : ϕ

∀X : ϕ “for all set of configurations X”

x ∈ X “x belongs to X”

T(x, y), x = y, ϕ1 ∧ ϕ2, ¬ϕ

Examples
Chains. T∗(x, y) := ∃P : x, y ∈ P

∧
∀z ∈ P :

deg+P (x) = 1, deg−P (x) = 0,

deg+P (y) = 0, deg−P (y) = 1,

deg+P (z) = 1, deg+P (z) = 1.

Connexity. ∀x, y : T∗(x, y) ∧ T∗(y, x).
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Now fix ψ an MSO formula.

Definition (ψ-MSO-Dynamics)

ψ-MSO-Dynamics
Input: a nondeterministic network F
Question: does GF |= ψ?

Question
What is the complexity of ψ-MSO-Dynamics?

Can we find G, J,D for an arbitrary fixed MSO formula ψ?
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Proposition (Bonnet, ΓGPT, 2021)

For all m, there’s a graph Dm such that for all ψ of rank m, either:
for all G, we have G t Dm |= ψ; or
for all G, we have G t Dm 6|= ψ.

We have a “universal D” that only depends on the rank of ψ!

We might need to consider ¬ψ, though.
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Proposition (Bonnet, ΓGPT, 2021)
For all m, there’s a graph Dm such that for all ψ of rank m, either:
for all G, we have G t Dm |= ψ; or for all G, we have G t Dm 6|= ψ.

Lemma 1 (cf. Courcelle’s book)

The relation ≡m for MSO has finitely many classes α1, . . . , αa(m).

Lemma 2
For all G, there’s an integer p such that

⊔p G ≡m
⊔p+1 G.

Proof (Proposition)

Let A1, . . . ,Aa(m) be representatives of α1, . . . , αa(m).
Let p be the max p given by Lemma 2 over A1, . . . ,Aa(m).

Dm =
⊔a(m)

i=1

⊔p Ai
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Let k denote an arbitrary integer.

Proposition (ΓGPT, 2021)

If ψ has an infinity of models and countermodels of treewidth ≤ k,
then there are suitable G and J.

Theorem (Courcelle)
For all ψ, k, there is a tree automaton testing ψ when run on tree
decompositions with bags of size k.

Proof (Proposition)

Find the tree automaton for ψ and k and use a pumping lemma.

(We need to replace
⊔

with a more complicated “gluing” operator.)
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Let k denote an arbitrary integer.

Theorem (ΓGPT, 2021)

If ψ has an infinity of models and countermodels of treewidth ≤ k,
then ψ-Dynamics is either NP- or coNP-hard.

What about ψ not satisfying that condition?

Those with finitely many (counter)models are O(1).
The other ones are trick (e.g. clique)…
The pumping techniques do not work anymore for them.
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The last case of the MSO theorem
The Boolean case (or other fixed alphabet)

Other update modes
Other logics (Counting…)

Your question here

Thank you for your attention!
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