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Associating parallel automata network

dynamics and strictly one-way cellular

automata

Pacôme Perrotin, Aix-Marseille University
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Modules
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Acyclic networks and output functions
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Oa = α1
= 0

Ob = α2 ∨ ¬β1
= 1 ∨ ¬1 = 1

Oc = (α3 ∨ ¬β2) ∧ ¬α2

= (0 ∨ ¬1) ∧ ¬1 = 0

Theorem (Perrot, Perrotin, Sené 2010)

If two acyclic modules have equivalent output functions, then
wiring them symmetrically will result in two networks with
isomorphic attractors.
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Sketch of proof

Theorem (Perrot, Perrotin, Sené 2020)

If two automata networks have equivalent output functions on two
respective feedback vertex sets, then they have isomorphic limit
dynamics.
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Using output functions to get attractors
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From output functions to cellular automata

O = ¬α2 ∨ α3

cx ⇐ ¬cx−2 ∨ cx−3

Theorem
The fixed points of this cellular automata correspond one-to-one
with the limit dynamics implied by the output function.
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About strictly one-way cellular automata

cx ⇐ ¬cx−2 ∨ cx−3

strictly

one-way cellular automaton

Theorem
All strictly one-way cellular automata correspond to some
automata network, i.e. their fixed points are equivalent to the
networks’ attractors.
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The full picture
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Thank you! We are now open for questions.
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