
Conjunctive grammars, cellular automata and logic

Théo Grente, Étienne Grandjean

AMACC - GREYC - Université Caen Normandie - Normandie Université

Automata 2021, Marseille France

Conjunctive grammars, cellular automata and logic 1 / 25

Conjunctive grammars

“Context-free grammars may be thought of as a logic for inductive
description of syntax in which the propositional connectives available. . .are
restricted to disjunction only.”[Okhotin]

Conjunctive grammars are an extension of context-free grammars by
adding an explicit conjunction operation within the grammar rules.

Conjunctive grammars, cellular automata and logic 2 / 25

An example of conjunctive grammar

The following grammar generates the language {anbncn | n ≥ 1}, known
to not be context-free.

S → AB&DC
A→ aA | a
B → bBc | bc
C → Cc | c
D → aDb | ab

{aibjck | j = k} ∩ {aibjck | i = j} = {anbncn | n ≥ 1}

L(AB) L(DC) L(S)

Conjunctive grammars, cellular automata and logic 3 / 25

An example of conjunctive grammar

The following grammar generates the language {anbncn | n ≥ 1}, known
to not be context-free.

S → AB&DC
A→ aA | a
B → bBc | bc
C → Cc | c
D → aDb | ab

Each rule of a conjunctive grammar G = (Σ,N,P,S) is of the form :

A→ α1&...&αm, for m ≥ 1 and αi ∈ (Σ ∪ N)+

Conjunctive grammars, cellular automata and logic 3 / 25

Binary normal form

Each conjunctive grammar can be rewritten in an equivalent binary
normal form (extension of the Chomsky normal form for CFL).

A conjunctive grammar G = (Σ,N,P, S) is in binary normal form if each
rule in P has one of the two following forms :

a long rule : A→ B1C1&...&BmCm (m ≥ 1,Bi ,Cj ∈ N) ;

a short rule : A→ a (a ∈ Σ).

Conjunctive grammars, cellular automata and logic 4 / 25

Real time cellular automata as language recognizers

Cellular automata as word acceptors :

Input : the initial configuration of
the CA is only determined by the
input word ;

Output : one specific cell called the
output cell gives the output,
“accept” or “reject”, of the
computation ;

Acceptance : an input word is
accepted by the CA at time t if the
output cell enters an accepting state
at time t.

w1 w2 w3 w4 w5

RealTimeCA

t = n

t = 1

Conjunctive grammars, cellular automata and logic 5 / 25

Real time cellular automata as language recognizers

A word is accepted in real time by a
CA if the word is accepted in minimal
time for the output cell to receive each
of its letters.

A language is recognized in real time by
a CA if its the set of word that it accepts
in real-time.

w1 w2 w3 w4 w5

RealTimeCA

t = n

t = 1

Conjunctive grammars, cellular automata and logic 5 / 25

Conjunctive grammars and cellular automata

LinConj = Trellis

LinConj is the linear restriction of conjunctive grammars.

Trellis is the one-way restriction of RealTimeCA.

Conjunctive grammars, cellular automata and logic 6 / 25

A question and its consequences

Is Conj a subset of RealTimeCA ?

Conj ⊆ RealTimeCA would implies that Conj and CFL ⊆ DTIME(n2).

Conj * RealTimeCA would implies that either Conj (DSPACE(n) or
RealTimeCA (DSPACE(n).

In this paper we prove two weakened versions of this question.

Conjunctive grammars, cellular automata and logic 7 / 25

Over a unary alphabet

Overview

1 Over a unary alphabet

2 Over a general alphabet

3 Conclusion

Conjunctive grammars, cellular automata and logic 8 / 25

Over a unary alphabet

Expression power

Conjunctive grammars over a unary alphabet generate more than regular
languages [Jez].

Example of the language {a4n | n ≥ 0} ⊂ {a}+, generated by the
grammar :

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A12 | A1′A1′

A3 → A1A2 &A12A12 | A1′A2′

A12 → A1A2 &A3A3

A1′ → a

A2′ → A1′A1′

Conjunctive grammars, cellular automata and logic 9 / 25

Over a unary alphabet

Context

CFL1 = Trellis1 = LinConj1 = Reg1

Conj1RealTimeCA1

DSPACE1(n)

((

⊆ ⊆

?

Conjunctive grammars, cellular automata and logic 10 / 25

Over a unary alphabet

Context

CFL1 = Trellis1 = LinConj1 = Reg1

Conj1RealTimeCA1

DSPACE1(n)

((

⊆ ⊆
?

Conjunctive grammars, cellular automata and logic 10 / 25

Over a unary alphabet

Our result

Conj1⊆ RealTimeCA1

The inclusion Conj ⊆ RealTimeCA holds when restricted to unary
languages.

CFL1 = Trellis1 = LinConj1 = Reg1

Conj1

RealTimeCA1

DSPACE1(n)

(
⊆

⊆

Conjunctive grammars, cellular automata and logic 11 / 25

Over a unary alphabet

Logic as a bridge from grammars to CA

Computation of CA is deterministic → Horn formulae

Computation of CA is local → predecessor operator

Computation on 2 dimensions (time and space) → 2 variables (with
a symmetric role in the logic)

Conjunctive grammars, cellular automata and logic 12 / 25

Over a unary alphabet

Our logic

pred-ESO-HORN is the set of formulae of the form ∀x∀yψ(x , y) where ψ is
a conjunction of Horn clauses of one the three following forms :

an input clause : min(x)∧ (¬) min(y)∧Qs(y)→ R(x , y) with s ∈ Σ ;

a computation clause : δ1 ∧ . . . ∧ δr → R(x , y) where each δh is a
conjunction S(x − i , y − j) ∧ x > i ∧ y > j , with i , j ≥ 0 ;

a contradiction clause : max(x) ∧ max(y) ∧ R(x , y)→ ⊥.

Conjunctive grammars, cellular automata and logic 13 / 25

Over a unary alphabet

Expressing unary conjunctive grammars in our logic

Rules of a grammar G = ({a},N,P, S) in binary normal form :

A→ B1C1&...&BmCm (m ≥ 1,Bi ,Cj ∈ N) ;

A→ a.

The grammar is expressed in our logic by using three types of binary
predicates :

MajA(x , y) ⇐⇒
⌈ y

2

⌉
≤ x ≤ y and ax ∈ L(A) ;

MinA(x , y) ⇐⇒
⌈ y

2

⌉
≤ x < y and ay−x ∈ L(A) ;

SumBC(x , y) ⇐⇒ there is some x ′ with
⌈ y

2

⌉
≤ x ′ ≤ x such that

either ax
′ ∈ L(B) and ay−x

′ ∈ L(C), or ay−x
′ ∈ L(B) and ax

′ ∈ L(C).

(x , y) corresponds to the concatenations axay−x and ay−xax .

Conjunctive grammars, cellular automata and logic 14 / 25

Over a unary alphabet

Expressing unary conjunctive grammars in our logic

Rules of a grammar G = ({a},N,P, S) in binary normal form :

A→ B1C1&...&BmCm (m ≥ 1,Bi ,Cj ∈ N) ;

A→ a.

(x , y) corresponds to the concatenations axay−x and ay−xax .

Sample of clauses

MajBi
(x , y) ∧ MinCi

(x , y)→ SumBiCi(x , y) ;

MinBi
(x , y) ∧ MajCi

(x , y)→ SumBiCi(x , y) ;

¬min(x) ∧ SumBiCi(x − 1, y)→ SumBiCi(x , y) ;

x = y ∧ SumB1C1(x , y) ∧ · · · ∧ SumBmCm(x , y)→ MajA(x , y).

Conjunctive grammars, cellular automata and logic 14 / 25

Over a unary alphabet

Equivalence of our logic with real time CA

Logic

Grid-Circuit

Cellular Automata

Normalization Translation

pred-ESO-HORN

⇒ ⇒⇔ ⇔

RealTimeCA

The logic of the grid-circuit corresponds to a normalized version of
our starting logic.

The computation of the grid-circuit is local and uniform as for a CA
⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 15 / 25

Over a unary alphabet

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization Translation

pred-ESO-HORN

⇒ ⇒⇔ ⇔

RealTimeCA

The logic of the grid-circuit corresponds to a normalized version of
our starting logic.

The computation of the grid-circuit is local and uniform as for a CA
⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 15 / 25

Over a unary alphabet

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization

Translation

pred-ESO-HORN ⇒

⇒⇔ ⇔

RealTimeCA

The logic of the grid-circuit corresponds to a normalized version of
our starting logic.

The computation of the grid-circuit is local and uniform as for a CA
⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 15 / 25

Over a unary alphabet

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization Translation

pred-ESO-HORN ⇒ ⇒

⇔ ⇔

RealTimeCA

The logic of the grid-circuit corresponds to a normalized version of
our starting logic.

The computation of the grid-circuit is local and uniform as for a CA
⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 15 / 25

Over a unary alphabet

Equivalence of our logic with real time CA

Logic Grid-Circuit Cellular Automata

Normalization Translation

pred-ESO-HORN

⇒ ⇒

⇔ ⇔

RealTimeCA

The logic of the grid-circuit corresponds to a normalized version of
our starting logic.

The computation of the grid-circuit is local and uniform as for a CA
⇒ direct translation of the grid-circuit into a CA.

Conjunctive grammars, cellular automata and logic 15 / 25

Over a unary alphabet

Computation example

Grammar

→ Formula→ Normalized formula → Grid circuit→ CA

Conjunctive grammars, cellular automata and logic 16 / 25

Over a unary alphabet

Computation example

Grammar → Formula

→ Normalized formula → Grid circuit→ CA

Conjunctive grammars, cellular automata and logic 16 / 25

Over a unary alphabet

Computation example

Grammar → Formula→ Normalized formula

→ Grid circuit→ CA

Conjunctive grammars, cellular automata and logic 16 / 25

Over a unary alphabet

Computation example

Grammar → Formula→ Normalized formula → Grid circuit

→ CA

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A12 | A1′A1′

A3 → A1A2 &A12A12 | A1′A2′

A12 → A1A2 &A3A3

A1′ → a

A2′ → A1′A1′

Conjunctive grammars, cellular automata and logic 16 / 25

Over a unary alphabet

Computation example

Grammar → Formula→ Normalized formula → Grid circuit→ CA

A1 → A1A3 &A2A2 | a
A2 → A1A1 &A2A12 | A1′A1′

A3 → A1A2 &A12A12 | A1′A2′

A12 → A1A2 &A3A3

A1′ → a

A2′ → A1′A1′

Conjunctive grammars, cellular automata and logic 16 / 25

Over a general alphabet

Overview

1 Over a unary alphabet

2 Over a general alphabet

3 Conclusion

Conjunctive grammars, cellular automata and logic 17 / 25

Over a general alphabet

Context

Trellis = LinConjCFL

Conj RealTimeCA

DSPACE(n)

(

⊆
(

⊆

(

6=

?

Conjunctive grammars, cellular automata and logic 18 / 25

Over a general alphabet

Context

Trellis = LinConjCFL

Conj RealTimeCA

DSPACE(n)

(

⊆
(

⊆

(

6=

?

Conjunctive grammars, cellular automata and logic 18 / 25

Over a general alphabet

Our result

Conj ⊆ RealTime2OCA

RealTime2OCA : real time of 2 dimensional one-way cellular automata

Trellis = LinConjCFL

RealTime2OCA

Conj RealTimeCA

DSPACE(n)

(((

⊆ ⊆

⊆

6=

Conjunctive grammars, cellular automata and logic 19 / 25

Over a general alphabet

Our result

Conj ⊆ RealTime2OCA

RealTime2OCA : real time of 2 dimensional one-way cellular automata

Trellis = LinConjCFL

RealTime2OCA

Conj RealTimeCA

DSPACE(n)

(((

⊆ ⊆
⊆

6=

Conjunctive grammars, cellular automata and logic 19 / 25

Over a general alphabet

The method

Logic Cube-Circuit Cellular Automata

incl-pred-ESO-HORN

w

⇔ ⇔

Cube w

RealTime2OCA

Conjunctive grammars, cellular automata and logic 20 / 25

Over a general alphabet

Remarks on the logic

Conjunction of Horn clauses ;

3 variables with asymmetric roles : 2 variables for an induction on
intervals, 1 for predecessor induction.

([x + a, y − b], z − c)→ ([x , y], z)

Expressing conjunctive grammars : (x , y , z) corresponds to the
concatenations wx . . .wx+z−1wx+z . . .wy and
wx . . .wy−zwy−z+1 . . .wy .

Conjunctive grammars, cellular automata and logic 21 / 25

Over a general alphabet

Signals diagram

Conjunctive grammars, cellular automata and logic 22 / 25

Conclusion

Overview

1 Over a unary alphabet

2 Over a general alphabet

3 Conclusion

Conjunctive grammars, cellular automata and logic 23 / 25

Conclusion

Conclusion

Two inclusions : Conj1 ⊆ RealTimeCA1 and Conj ⊆ RealTime2OCA.

The grid : natural way to see the induction of the problem.

Use of logic to program cellular automata.

Conjunctive grammars, cellular automata and logic 24 / 25

Conclusion

Open questions

The question whether Conj ⊆ RealTimeCA or not is still open.

Better understanding of the expressive power of conjunctive
grammars.

Exact characterizations of Conj ? Through logic ? Through
computational complexity ?

Conjunctive grammars, cellular automata and logic 25 / 25

	Over a unary alphabet
	Over a general alphabet
	Conclusion

